Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Abstract

General Description The MAX19985A high-linearity, dual-channel, downconversion mixer is designed to provide approximately 8.7 dB gain, +25.5 dBm of IIP3, and 9.0 dB of noise figure for 700 MHz to 1000 MHz diversity receiver applications. With an optimized LO frequency range of 900 MHz to 1300 MHz , this mixer is ideal for high-side LO injection architectures in the cellular and new 700 MHz bands. Low-side LO injection is supported by the MAX19985, which is pin-pin and functionally compatible with the MAX19985A. In addition to offering excellent linearity and noise performance, the MAX19985A also yields a high level of component integration. This device includes two double-balanced passive mixer cores, two LO buffers, a dual-input LO selectable switch, and a pair of differential IF output amplifiers. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19985A requires a nominal LO drive of OdBm and a typical supply current of 330 mA at $\mathrm{VCC}=+5.0 \mathrm{~V}$ or 280 mA at $\mathrm{VCC}=+3.3 \mathrm{~V}$. The MAX19985/MAX19985A are pin compatible with the MAX19995/MAX19995A series of 1700 MHz to 2200MHz mixers and pin similar with the MAX19997A/ MAX19999 series of 1850 MHz to 3800 MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used across multiple frequency bands. The MAX19985A is available in a $6 \mathrm{~mm} \times 6 \mathrm{~mm}, 36$-pin thin QFN package with an exposed pad. Electrical performance is guaranteed over the extended temperature range of $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Applications
850MHz WCDMA and cdma2000® Base Stations 700 MHz LTE/WiMAX ${ }^{\text {™ }}$ Base Stations
GSM850/900 2G and 2.5G EDGE Base Stations iDEN ${ }^{\circledR}$ Base Stations

Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
cdma2000 is a registered trademark of Telecommunications Industry Association.
WiMAX is a trademark of WiMAX Forum.
iDEN is a registered trademark of Motorola, Inc.

- 700MHz to 1000 MHz RF Frequency Range
-900MHz to 1300 MHz LO Frequency Range
- 50 MHz to 500 MHz IF Frequency Range
- 8.7dB Typical Conversion Gain
- 9.0dB Typical Noise Figure
- +25.5dBm Typical Input IP3
- +12.6dBm Typical Input 1dB Compression Point
- 76dBc Typical 2LO-2RF Spurious Rejection at $P_{\text {RF }}=-10 \mathrm{dBm}$
- Dual Channels Ideal for Diversity Receiver Applications
- 48dB Typical Channel-to-Channel Isolation
- Low -3dBm to +3dBm LO Drive
- Integrated LO Buffer
- Internal RF and LO Baluns for Single-Ended Inputs
- Built-In SPDT LO Switch with 46dB LO1-to-LO2 Isolation and 50ns Switching Time
- Pin Compatible with the MAX19995/MAX19995A Series of $\mathbf{1 7 0 0 M H z}$ to $\mathbf{2 2 0 0 M H z}$ Mixers
- Pin Similar to the MAX19997A/MAX19999 Series of 1850 MHz to 3800 MHz Mixers
- Single +5.0 V or +3.3 V Supply
- External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX19985AETX +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP*
MAX19985AETX +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP*

+Denotes a lead-free/RoHS-compliant package.
*EP = Exposed pad.
$T=$ Tape and reel.

Typical Application Circuit and Pin Configuration appear at end of data sheet.

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

ABSOLUTE MAXIMUM RATINGS

VCc to GND. LO1, LO2 to GND	$\begin{array}{r} -0.3 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ \hline \end{array}$
Any Other Pins to GND	to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
RFMAIN, RFDIV, and LO_ Input Power+15dBm
RFMAIN, RFDIV Current (RF is DC shorted to GND through balun)..	
	8.8 W

Note 1: Based on junction temperature $T_{J}=T_{C}+\left(\theta_{J C} \times V_{C C} \times I_{C C}\right)$. This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 2: Junction temperature $T_{J}=T_{A}+\left(\theta_{J A} \times V_{C C} \times I_{C C}\right)$. This formula can be used when the ambient temperature of the $P C B$ is known. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: T_{C} is the temperature on the exposed pad of the package. T_{A} is the ambient temperature of the device and PCB.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{V}_{C C}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, all parameters are production tested, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{CC}		4.75	5	5.25	V
Supply Current	I_{CC}		330	380	mA	
LOSEL Input High Voltage	V_{IH}		2		V	
LOSEL Input Low Voltage	$\mathrm{V}_{\text {IL }}$			0.8	V	
LOSEL Input Current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{IL}}$		-10	+10	$\mu \mathrm{~A}$	

+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, all parameters are guaranteed by design and not production tested, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC	$\mathrm{R} 2=\mathrm{R} 5=600 \Omega$	3.0	3.3	3.6	V
Supply Current	IcC	Total supply current, $\mathrm{V}_{C C}=3.3 \mathrm{~V}$		280		mA
LOSEL Input High Voltage	V_{IH}			2		V
LOSEL Input Low Voltage	VIL			0.8		V

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

RECOMMENDED AC OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency	$f_{\text {RF }}$	(Note 5)	700		1000	MHz
LO Frequency	flo	(Note 5)	900		1300	MHz
IF Frequency	fiF	Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)	100		500	MHz
		Using alternative Mini-Circuits TC4-1W-7A 4:1 transformer, IF matching components affect the IF frequency range (Note 5)	50		250	
LO Drive Level	PLO	(Note 5)	-3		+3	dBm

+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to +3 dBm , $P_{\text {RF }}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=700 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz}$ to $1200 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}<\mathrm{f}_{\mathrm{LO}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=900 \mathrm{MHz}, \mathrm{fLO}=1100 \mathrm{MHz}, \mathrm{f}_{\mathrm{f}}=200 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, all parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Power Gain	Gc	$\begin{aligned} & \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=824 \mathrm{MHz} \text { to } 915 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	7.0	8.7	10.2	dB
		$\begin{aligned} & \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{fRF}_{\mathrm{R}}=824 \mathrm{MHz} \text { to } 915 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}(\text { Note } 9) \end{aligned}$	7.7	8.7	9.7	
Conversion Power Gain Variation vs. Frequency	$\Delta \mathrm{Gc}$	Flatness over any one of three frequency bands: $\begin{aligned} & f_{R F}=824 \mathrm{MHz} \text { to } 849 \mathrm{MHz}, \\ & f_{R F}=869 \mathrm{MHz} \text { to } 894 \mathrm{MHz}, \\ & f_{R F}=880 \mathrm{MHz} \text { to } 915 \mathrm{MHz}(\text { Note } 9) \end{aligned}$		0.15	0.3	dB
Gain Variation Over Temperature	TCG	$\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-0.012		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure	NF	$\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		9.2	11.5	dB
		$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=850 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \\ & \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{CC}=+5.0 \mathrm{~V} \end{aligned}$		9.0	10.3	
Noise Figure Temperature Coefficient	TCNF	T $\mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.018		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure Under Blocking Condition	NfB	+8 dBm blocker tone applied to RF port, $\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1090 \mathrm{MHz}$, PLO $=-3 \mathrm{dBm}, \mathrm{f}_{\mathrm{BL}}$ OCKER $=800 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$ (Note 7)		18.8	22	dB
Input 1dB Compression Point	$\mathrm{IP}_{1 \mathrm{~dB}}$	$\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10.0	12.6		dBm
		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Note 9)	11.0	12.6		
Third-Order Input Intercept Point	IIP3		22.5	25.5		dBm
			23.5	25.5		

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit, VCC $=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to +3 dBm , $P_{R F}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=700 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{fLO}=900 \mathrm{MHz}$ to $1200 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}<\mathrm{f}_{\mathrm{LO}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1100 \mathrm{MHz}, \mathrm{f}_{\mathrm{f}}=200 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, all parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
2LO-2RF Spur Rejection	2×2	$\begin{aligned} & \hline \mathrm{fRF}=800 \mathrm{MHz}, \\ & \mathrm{fLO}=1000 \mathrm{MHz}, \\ & \text { fSPUR }=900 \mathrm{MHz} \\ & \hline \end{aligned}$	$P_{\text {Pr }}=-10 \mathrm{dBm}$	-63	-76		dBc
			$\begin{aligned} & \text { PRF }=-5 \mathrm{dBm} \\ & \text { (Note 9) } \end{aligned}$	-58	-71		
3LO-3RF Spur Rejection	3×3	$\begin{aligned} & \mathrm{fRF}=800 \mathrm{MHz}, \\ & \mathrm{fLO}=1000 \mathrm{MHz}, \\ & \mathrm{fSPUR}=933.3 \mathrm{MHz} \end{aligned}$	$P_{\text {RF }}=-10 \mathrm{dBm}$	-65	-78		dBc
			$\begin{aligned} & \text { PRF }=-5 \mathrm{dBm} \\ & \text { (Note 9) } \end{aligned}$	-60	-73		
LO Leakage at RF Port		$\begin{aligned} & \text { fLO }=900 \mathrm{MHz} \text { to } 1300 \mathrm{MHz}, \mathrm{PLO}=+3 \mathrm{dBm} \\ & \text { (Note 10) } \end{aligned}$			-40	-20	dBm
2LO Leakage at RF Port		$\mathrm{fLO}=900 \mathrm{MHz}$ to $1200 \mathrm{MHz}, \mathrm{PLO}=+3 \mathrm{dBm}$ (Note 10)			-38	-25	dBm
		fLO $=1200 \mathrm{MHz}$ to 1300 MHz, PLO $=+3 \mathrm{dBm}$ (Note 10)			-35	-22	
3LO Leakage at RF Port		$\begin{aligned} & \text { fLO }=900 \mathrm{MHz} \text { to } 1300 \mathrm{MHz}, \mathrm{PLO}=+3 \mathrm{dBm} \\ & \text { (Note 10) } \end{aligned}$			-50	-28	dBm
4LO Leakage at RF Port		$\begin{aligned} & \text { fLO }=900 \mathrm{MHz} \text { to } 1300 \mathrm{MHz}, \mathrm{PLO}=+3 \mathrm{dBm} \\ & \text { (Note 9) } \end{aligned}$			-25	-15	dBm
LO Leakage at IF Port		$\begin{aligned} & \text { fLO }=900 \mathrm{MHz} \text { to } 1300 \mathrm{MHz}, \mathrm{PLO}=+3 \mathrm{dBm} \\ & \text { (Note 10) } \end{aligned}$			-35	-23	dBm
RF-to-IF Isolation		$\mathrm{frF}^{\text {a }}$ 824MHz to 915 MHz (Note 10)		30	38		dB
LO-to-LO Isolation		$\begin{aligned} & \text { PLO1 }=+3 \mathrm{dBm}, \text { PLO2 }=+3 \mathrm{dBm}, \\ & \text { fLO1 }=900 \mathrm{MHz}, \mathrm{fLO2}=901 \mathrm{MHz}, \\ & \text { PRF }=-5 \mathrm{dBm}(\text { Notes } 8,10) \end{aligned}$		40	46		dB
Channel-to-Channel Isolation		RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN), relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω (Note 9)		40	48		dB
LO Switching Time		50% of LOSEL to IF settled within 2 degrees			50	1000	ns
RF Input Impedance	ZRF				50		Ω
RF Input Return Loss		LO on and IF termi impedance	nto matched		20		dB
LO Input Impedance	ZLO				50		Ω
LO Input Return Loss		RF and IF terminated into matched impedance, LO port selected			20		dB
		RF and IF terminated into matched impedance, LO port unselected			20		
IF Terminal Output Impedance	ZIF	Nominal differential impedance at the IC's IF output			200		Ω
IF Return Loss		RF terminated in 50Ω; transformed to 50Ω using external components shown in the Typical Application Circuit			18		dB

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, RF and LO ports are driven from 50Ω sources. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, $\operatorname{PRF}=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1100 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Conversion Power Gain	Gc				8.7		dB
Conversion Power Gain Variation vs. Frequency	$\Delta \mathrm{GC}$	Flatness over any one of three frequency bands:$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=824 \mathrm{MHz} \text { to } 849 \mathrm{MHz}, \\ & f_{\mathrm{RF}}=869 \mathrm{MHz} \text { to } 894 \mathrm{MHz}, \\ & f_{\mathrm{RF}}=880 \mathrm{MHz} \text { to } 915 \mathrm{MHz} \end{aligned}$			0.15		dB
Gain Variation Over Temperature	TCG	$\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			-0.012		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure	NF				9.0		dB
Noise Figure Temperature Coefficient	TCNF	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			0.018		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 1dB Compression Point	$\mathrm{P}_{1 \mathrm{~dB}}$				10.6		dBm
Third-Order Input Intercept Point	IIP3	$\mathrm{f}_{\mathrm{RF} 1}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=901 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm} /$ tone			24.7		dBm
2LO-2RF Spur Rejection	2×2	$\begin{aligned} & \hline \mathrm{fRF}=800 \mathrm{MHz}, \\ & \mathrm{fLO}=1000 \mathrm{MHz}, \\ & \mathrm{fSPUR}=900 \mathrm{MHz} \end{aligned}$	$P_{\text {RF }}=-10 \mathrm{dBm}$		-74.9		dBc
			$P_{\text {RF }}=-5 \mathrm{dBm}$		-69.9		
3LO-3RF Spur Rejection	3×3	$\begin{aligned} & \text { fRF }=800 \mathrm{MHz}, \\ & \mathrm{fLO}=1000 \mathrm{MHz}, \\ & \text { fSPUR }=933.333 \mathrm{MHz} \end{aligned}$	$P_{\text {RF }}=-10 \mathrm{dBm}$		-78		dBc
			$\mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}$		-73		
Maximum LO Leakage at RF Port		$\mathrm{fLO}=900 \mathrm{MHz}$ to 1300 MHz , PLO $=+3 \mathrm{dBm}$			-40		dBm
Maximum 2LO Leakage at RF Port		$\mathrm{fLO}=900 \mathrm{MHz}$ to 1300 MHz , PLO $=+3 \mathrm{dBm}$			-42		dBm
Maximum LO Leakage at IF Port		$\mathrm{fLO}=900 \mathrm{MHz}$ to $1300 \mathrm{MHz}, \mathrm{PLO}=+3 \mathrm{dBm}$			-34		dBm
Minimum RF-to-IF Isolation		$\mathrm{fRF}^{\text {a }}$ 824MHz to 915MHz			38		dB
LO-to-LO Isolation		$\begin{aligned} & \text { PLO1 }=+3 \mathrm{dBm}, \text { PLO2 }=+3 \mathrm{dBm}, \\ & \mathrm{fLO1}=900 \mathrm{MHz}, \mathrm{fLO2}=901 \mathrm{MHz}(\text { Note } 8) \end{aligned}$			45		dB
Channel-to-Channel Isolation		RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN), relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω			48		dB
LO Switching Time		50\% of LOSEL to IF settled within 2 degrees			50		ns
RF Input Impedance	ZRF				50		Ω
RF Input Return Loss		LO on and IF terminat impedance	into matched		21		dB
LO Input Impedance	ZLO				50		Ω
LO Input Return Loss		RF and IF terminated into matched impedance, LO port selected			31		dB
		RF and IF terminated into matched impedance, LO port unselected			24		

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit, RF and LO ports are driven from 50Ω sources. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, $\operatorname{PRF}=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=1100 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
IF Terminal Output Impedance	ZIF	Nominal differential impedance at the IC's IF output	200	UNITS
IF Output Return Loss		RF terminated in 50Ω; transformed to 50Ω using external components shown in the Typical Application Circuit	17	dB

Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Performance is optimized for RF frequencies of 824 MHz to 915 MHz .
Note 6: All limits reflect losses of external components. Output measurements taken at IF outputs of Typical Application Circuit.
Note 7: Measured with external LO source noise filtered so the noise floor is $-174 \mathrm{dBm} / \mathrm{Hz}$. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in the Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 8: Measured at IF port at IF frequency. LOSEL may be in any logic state.
Note 9: Limited production testing.
Note 10: Guaranteed by production testing.

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics
(Typical Application Circuit, VCc $=\mathbf{+ 5 . 0 V}$, PLO $=0 \mathrm{dBm}, \mathrm{PRF}_{\mathrm{RF}}=-5 \mathrm{dBm}$, LO is high-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

(Typical Application Circuit, VCC $=\mathbf{+ 5 . 0 V}$, PLO $=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}$, LO is high-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit, VCC $=\mathbf{+ 5 . 0 V}$, PLO $=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}$, LO is high-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit, VCC $=\mathbf{+ 5 . 0 V}$, PLO $=0 \mathrm{dBm}$, PRF $=-5 \mathrm{dBm}$, LO is high-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit, Vcc $=\mathbf{+ 3 . 3 V}$, PLO $=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}$, LO is high-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

NOISE FIGURE
vs. RF FREQUENCY

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

\qquad Typical Operating Characteristics (continued)
(Typical Application Circuit, $\mathbf{V} \mathbf{C C}=+\mathbf{3 . 3 V}$, PLO $=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}$, LO is high-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3LO-3RF RESPONSE
3LO-3RF RESPONSE
vs. RF FREQUENCY

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit, VCC=+3.3V, PLO $=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}$, LO is high-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit, $\mathrm{V}_{\mathrm{Cc}}=+3.3 \mathrm{~V}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{LO}$ is high-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit, $\mathbf{V} \mathbf{C C}=+\mathbf{3 . 3 V}$, PLO $=0 \mathrm{dBm}, \mathrm{PRF}_{\mathrm{RF}}=-5 \mathrm{dBm}$, LO is high-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Table 1. DC Current vs. Bias Resistor Settings

BIAS CONDITION	DC CURRENT (mA)	R1 AND R4 VALUES (Ω)	R2 AND R5 VALUES (Ω)
1	359.4	698	800
2	331.8	698	1100
3	322.8	698	1200
4	311.7	698	1400
5	268.2	1100	1200
6	244.4	1400	1200
7	223.7	1820	1200

Note: See TOCs 42-46 for performance trade-offs vs. DC bias condition.

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

PIN	NAME	FUNCTION
1	RFMAIN	Main Channel RF input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
2	TAPMAIN	Main Channel Balun Center Tap. Bypass to GND with 39 pF and $0.033 \mu \mathrm{~F}$ capacitors as close as possible to the pin with the smaller value capacitor closer to the part.
$\begin{gathered} 3,5,7,12,20,22, \\ 24,25,26,34 \end{gathered}$	GND	Ground
$\begin{gathered} 4,6,10,16,21, \\ 30,36 \end{gathered}$	VCC	Power Supply. Bypass to GND with $0.01 \mu \mathrm{~F}$ capacitors as close as possible to the pin. Pins 4 and 6 do not require bypass capacitors.
8	TAPDIV	Diversity Channel Balun Center Tap. Bypass to GND with 39 pF and $0.033 \mu \mathrm{~F}$ capacitors as close as possible to the pin with the smaller value capacitor closer to the part.
9	RFDIV	Diversity Channel RF Input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
11	IFDBIAS	IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity IF amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).
13, 14	IFD+, IFD-	Diversity Mixer Differential IF Outputs. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit).
15	LEXTD	Diversity External Inductor Connection. Connect a parallel combination of an inductor and a 500Ω resistor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation (see the Typical Operating Characteristics for typical performance vs. inductor value).
17	LODBIAS	LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity LO amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).
18, 28	N.C.	No Connection. Not internally connected.
19	LO1	Local Oscillator 1 Input. This input is internally matched to 50Ω. Requires an input DCblocking capacitor.
23	LOSEL	Local Oscillator Select. Set this pin to high to select LO1. Set to low to select LO2.
27	LO2	Local Oscillator 2 Input. This input is internally matched to 50Ω. Requires an input DCblocking capacitor.
29	LOMBIAS	LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main LO amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).
31	LEXTM	Main External Inductor Connection. Connect a parallel combination of an inductor and a 500Ω resistor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation (see Typical Operating Characteristics for typical performance vs. inductor value).
32, 33	IFM-, IFM+	Main Mixer Differential IF Outputs. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit).
35	IFMBIAS	IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main IF amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).
-	EP	Exposed Pad. Internally connected to GND. Connect to a large ground plane using multiple vias to maximize thermal and RF performance.

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Abstract

Detailed Description The MAX19985A is a dual-channel downconverter designed to provide 8.7 dB of conversion gain, +25.5 dBm of IIP3, +12.6 dBm typical input 1dB compression point, and a 9.0dB noise figure. In addition to its high-linearity performance, the MAX19985A achieves a high level of component integration. The device integrates two double-balanced mixers for two-channel downconversion. Both the main and diversity channels include a balun and matching circuitry to allow 50Ω single-ended interfaces to the RF ports and the two LO ports. An integrated single-pole/ double-throw (SPDT) switch provides 50 ns switching time between the two LO inputs with 46dB of LO-to-LO isolation and -40 dBm of LO leakage at the RF port. Furthermore, the integrated LO buffers provide a high drive level to each mixer core, reducing the LO drive required at the MAX19985A's inputs to a range of -3 dBm to +3 dBm . The IF ports for both channels incorporate differential outputs for downconversion, which is ideal for providing enhanced 2LO-2RF performance. Specifications are guaranteed over broad frequency ranges to allow for use in WCDMA, GSM/EDGE, iDEN, cdma2000, and LTE/WiMAX cellular and 700 MHz band base stations. The MAX19985A is specified to operate over an RF input range of 700 MHz to 1000 MHz , an LO range of 900 MHz to 1300 MHz , and an IF range of 50 MHz to 500 MHz . The external IF components set the lower frequency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information). Although this device is optimized for high-side LO injection applications, it can operate in low-side LO injection modes as well. However, performance degrades as flo continues to decrease. For increased low-side LO performance, refer to the MAX19985 data sheet.

RF Port and Balun

The RF input ports of both the main and diversity channels are internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. The RF port input return loss is typically 20 dB over the RF frequency range of 770 MHz to 915 MHz .

LO Inputs, Buffer, and Balun

The MAX19985A is optimized for a 900 MHz to 1300 MHz LO frequency range. As an added feature, the MAX19985A includes an internal LO SPDT switch for use in frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically 50ns, which is more than adequate for typical GSM applications. If frequency hopping is not employed, simply set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL), where logic-high selects LO1 and logic-low selects LO2. LO1 and LO2 inputs are internally matched to 50Ω, requiring only an 82 pF DC-blocking capacitor. To avoid damage to the part, voltage MUST be applied to Vcc before digital logic is applied to LOSEL. Alternatively, a $1 \mathrm{k} \Omega$ resistor can be placed in series at the LOSEL to limit the input current in applications where LOSEL is applied before Vcc.
The main and diversity channels incorporate a twostage LO buffer that allows for a wide-input power range for the LO drive. The on-chip low-loss baluns, along with LO buffers, drive the double-balanced mixers. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer

The core of the MAX19985A dual-channel downconverter consists of two double-balanced, highperformance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffers. When combined with the integrated IF amplifiers, the cascaded IIP3, 2LO-2RF rejection, and noise figure performance are typically $+25.5 \mathrm{dBm}, 76 \mathrm{dBc}$, and 9.0 dB , respectively.

Differential IF

The MAX19985A has an IF frequency range of 50 MHz to 500 MHz , where the low-end frequency depends on the frequency response of the external IF components. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF applications require a $4: 1$ (impedance ratio) balun to transform the 200Ω differential IF impedance to a 50Ω singleended system. After the balun, the return loss is typically 18dB. The user can use a differential IF amplifier on the mixer IF ports, but a DC block is required on both IFD+/IFD- and IFM+/IFM- ports to keep external DC from entering the IF ports of the mixer.

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Applications Information

Input and Output Matching

The RF and LO inputs are internally matched to 50Ω. No matching components are required. The RF port input return loss is typically 20 dB over the RF frequency range of 770 MHz to 915 MHz and return loss at the LO ports are typically 20dB over the entire LO range. RF and LO inputs require only DC-blocking capacitors for interfacing.
The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).

Externally Adjustable Bias

 Each channel of the MAX19985A has two pins (LO_BIAS, IF_BIAS) that allow external resistors to set the internal bias currents. Nominal values for these resistors are given in Table 2. Larger-value resistors can be used to reduce power dissipation at the expense of some performance loss. See the Typical Operating Characteristics to evaluate the power vs. performance tradeoff. If $\pm 1 \%$ resistors are not readily available, $\pm 5 \%$ resistors can be substituted.
LEXT_Inductors

For applications requiring optimum RF-to-IF and LO-toIF isolation, connect a parallel combination of a lowESR inductor and a 500Ω resistor from LEXT_ (pins 15 and 31) to ground. When improved isolation is not required, connect LEXT_ to ground using a 0Ω resistance. See the Typical Operating Characteristics to evaluate the isolation vs. inductor value tradeoff.

Layout Considerations

A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be so that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the

Table 2. Component Values

COMPONENT	VALUE	
C1, C2, C7, C8	$39 p F$	Microwave capacitors (0402)
C3, C6	$0.033 \mu \mathrm{~F}$	Microwave capacitors (0603)
C4, C5	-	Not used
C9, C13, C15, C17, C18	$0.01 \mu \mathrm{~F}$	Microwave capacitors (0402)
C10, C11, C12, C19, C20, C21	150 pF	Microwave capacitors (0603)
C14, C16	82 pF	Microwave capacitors (0402)
L1, L2, L4, L5	330 nH	Wire-wound high-Q inductors (0805)
L3, L6	30 nH	Wire-wound high-Q inductors (0603). Smaller values can be used at the expense of some performance loss (see the Typical Operating Characteristics).
R1, R4	698Ω	$\pm 1 \%$ resistors (0402). Larger values can be used to reduce power at the expense of some performance loss (see the Typical Operating Characteristics).
R2, R5	$1.2 \mathrm{k} \Omega$	$\pm 1 \%$ resistors (0402). Use for Vcc = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss (see the Typical Operating Characteristics).
R3, R6	600Ω	$\pm 1 \%$ resistors (0402). Use for Vcc = +3.3V applications.
R7, R8	500Ω	$\pm 1 \%$ resistors (1206)
T1, T2	$4: 1 \%$ resistors (0402)	
U1	Transformers (200:50) Mini-Circuits TC4-1W-7A	
	-	MAX19985A IC

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

device package to the PCB. The MAX19985A evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing

Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each Vcc pin and TAPMAIN/TAPDIV with the capacitors shown in the Typical Application Circuit (see Table 2 for component values). Place the TAPMAIN/TAPDIV bypass capacitors to ground within 100 mils of the pin.

Exposed Pad RF/Thermal Considerations

The exposed pad (EP) of the MAX19985A's 36-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19985A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Chip Information
PROCESS: SiGe BiCMOS

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
36 Thin QFN-EP	T3666+2	$\underline{\mathbf{2 1 - 0 1 4 1}}$

